Lower bounds for the low-rank matrix approximation
نویسندگان
چکیده
Low-rank matrix recovery is an active topic drawing the attention of many researchers. It addresses the problem of approximating the observed data matrix by an unknown low-rank matrix. Suppose that A is a low-rank matrix approximation of D, where D and A are [Formula: see text] matrices. Based on a useful decomposition of [Formula: see text], for the unitarily invariant norm [Formula: see text], when [Formula: see text] and [Formula: see text], two sharp lower bounds of [Formula: see text] are derived respectively. The presented simulations and applications demonstrate our results when the approximation matrix A is low-rank and the perturbation matrix is sparse.
منابع مشابه
Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix
The positive semidefinite rank of a nonnegative (m×n)-matrix S is the minimum number q such that there exist positive semidefinite (q × q)-matrices A1, . . . , Am, B1, . . . , Bn such that S(k, l) = trA∗kBl. The most important lower bound technique on nonnegative rank only uses the zero/nonzero pattern of the matrix. We characterize the power of lower bounds on positive semidefinite rank based ...
متن کاملLower bounds on matrix factorization ranks via noncommutative polynomial optimization
We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...
متن کاملSome upper and lower bounds on PSD-rank
Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bounds on the PSD-rank. All of these bounds are based on viewing a positive semidefinite factorization of a matrix M as a quantum communication proto...
متن کاملInformation-theoretic approximations of polytopes
Common information was introduced by Wyner [1975] as a measure of dependence of two random variables. This measure has been recently resurrected as a lower bound on the logarithm of the nonnegative rank of a nonnegative matrix in Jain et al. [2013], Braun and Pokutta [2013]. Lower bounds on nonnegative rank have important applications to several areas such as communication complexity and combin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017